
SANDIA REPORT
SAND2014-4968
Unlimited Release
Printed June, 2014

UQTk Version 2.1 User Manual

Bert Debusschere, Khachik Sargsyan, Cosmin Safta

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2014-4968
Unlimited Release
Printed June, 2014

UQTk Version 2.1 User Manual

Bert Debusschere, Khachik Sargsyan, Cosmin Safta

Abstract

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncer-
tainty in numerical model predictions. Version 2.1 offers intrusive and non-intrusive methods
for propagating input uncertainties through computational models, tools for sensitivity anal-
ysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring
parameters from experimental data. This manual discusses the download and installation
process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes
some of the examples provided with the toolkit.

3

4

Contents

1 Overview 7

2 Download and Installation 9

Requirements . 9

Download . 9

Directory Structure . 10

Compilation . 10

3 Source Code Description 13

4 Examples 15

Elementary Operations . 15

Forward Propagation of Uncertainty . 15

Bayesian Inference of a Line . 16

Surrogate Construction and Sensitivity Analysis . 20

Global Sensitivity Analysis via Sampling . 25

Karhunen-Loève Expansion of a Stochastic Process . 31

5 Support 33

References 34

5

6

Chapter 1

Overview

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of
uncertainty in numerical model predictions. In general, uncertainty quantification (UQ)
pertains to all aspects that affect the predictive fidelity of a numerical simulation, from the
uncertainty in the experimental data that was used to inform the parameters of a chosen
model, and the propagation of uncertain parameters and boundary conditions through that
model, to the choice of the model itself.

In particular, UQTk provides implementations of many probabilistic approaches for UQ
in this general context. Version 2.1 offers intrusive and non-intrusive methods for propagating
input uncertainties through computational models, tools for sensitivity analysis, methods
for sparse surrogate construction, and Bayesian inference tools for inferring parameters from
experimental data.

The main objective of UQTk is to make these methods available to the broader scientific
community for the purposes of algorithmic development in UQ or educational use. The most
direct way to use the libraries is to link to them directly from C++ programs. Alternatively,
in the examples section, many scripts for common UQ operations are provided, which can be
modified to fit the users’ purposes using existing numerical simulation codes as a black-box.

The next chapter in this manual discusses the download and installation process for
UQTk, followed by some pointers to the UQ methods used in the toolkit, and a description
of some of the examples provided with the toolkit.

7

8

Chapter 2

Download and Installation

Requirements

The core UQTk libraries are written in C++, with some dependencies on FORTRAN
numerical libraries. As such, to use UQTk, a compatible C++ and FORTRAN compiler
will be needed. UQTk is installed and built most naturally on a Unix-like platform, and
has been tested on Mac OS X and Linux. Installation and use on Windows machines under
Cygwin is possible, but has not been tested.

Many of the examples rely on Python and matplotlib for postprocessing and graphing. As
such, Python version 2.7.x with compatible NumPy, SciPy, and matplotlib are recommended.
Further the use of XML for input files requires the Expat XML parser library to be installed
on your system. Note, if you will be linking the core UQTk libraries directly to your own
codes, and do not plan on using the UQTk examples, then those additional dependencies
are not required.

Download

The most recent version of UQTk, currently 2.1, can be downloaded from the following
location:
http://www.sandia.gov/UQToolkit

After download, extract the tar file into the directory where you want to install UQTk.

% tar -xzvf uqtk_src_v2.0_Oct-14-2013.tgz

Make sure to replace the name of the tar file in this command with the name of the most
recent tar file you just downloaded.

9

Directory Structure

After extraction, there will be a new directory UQTk_v2.0 (version number may be dif-
ferent). Inside this top level directory are the following directories:

config Configuration files
doc_cpp Documentation for C++ libraries
src_cpp C++ source code
examples_cpp Examples with C++ libraries
pyUQTk Python scripts
src_matlab Matlab toolbox
examples_matlab Matlab examples

Compilation

Before compiling, some configuration settings need to specified, such as the location of
your compilers. To do so, change your directory to the configuration directory (again change
the version number in the directory name below to the current version):

% cd UQTk_v2.1/config

In this directory, create a file named config.site, based on one of the templates provided.
E.g., if you are working on a Mac or Linux machine with the GNU compilers installed, the
file config.gnu may be a good place to start from. Copy the file over to config.site, and
edit the paths to point to the compiler locations on your system.

Additionally, to use some of the scripts in the examples provided with the distribution,
the path to the upper level directory of UQTk needs to be set in the environment variable
UQTK_SRC. If you are using the tcsh shell, and you extracted the tar file into the directory
~/software e.g., then set the environment variable as follows:

% setenv UQTK_SRC ~/software/UQTk_v2.1

or the bash shell:

% UQTK_SRC=~/software/UQTk_v2.1

% export UQTK_SRC

Test the value with echo $UQTK_SRC.

10

Further, to use some of Python scripts, the location of the pyUQTk directory needs to
be in the Python search path, which is stored in the PYTHONPATH environment variable. If
you are using the tcsh shell:

% setenv PYTHONPATH "~/software/UQTk_v2.1:${PYTHONPATH}"

or with the bash shell:

% PYTHONPATH="~/software/UQTk_v2.1:${PYTHONPATH}"

% export PYTHONPATH

When this is done, go back up to the main level directory and compile with the make

command.

% cd ..

% make

If all goes well, there should be no errors. After compilation ends, there will be three
new directories in the src_cpp directory:

src_cpp/lib Compiled library files
src_cpp/include Include files for all libraries
src_cpp/bin Binary executables for the apps that come with UQTk

To use the UQTk libraries, your program should link in the libraries in src_cpp/lib and
add the src_cpp/include directory to the compiler include path. The apps are standalone
programs that perform UQ operations, such as response surface construction, or sampling
from random variables. For more details, see the Examples section.

11

12

Chapter 3

Source Code Description

UQTk implements many probabilistic methods found in the literature. For more details
on the methods, please refer to the following papers and books on Polynomial Chaos methods
for uncertainty propagation [2, 4], Bayesian inference [5], Bayesian compressive sensing [1],
and the Rosenblatt transformation [6].

For more details on the actual source code in UQTk, HTML documentation is also
available in the doc_cpp/html folder.

13

14

Chapter 4

Examples

The primary intended use for UQTk is as a library that provides UQ functionality to
numerical simulations. To aid the development of UQ-enabled simulation codes, some ex-
amples of programs that perform common UQ operations with UQTk are provided with the
distribution. These examples can serve as a template to be modified for the user’s purposes.
In some cases, e.g. in sampling-based approaches where the simulation code is used as a
black-box entity, the examples may provide enough functionality to be used directly, with
only minor adjustments. Below is a brief description of the main examples that are currently
in the UQTk distribution. For all of these, make sure the environment variable UQTK_SRC

is set and points to the UQTk upper level directory (i.e. the one that has src_cpp and
examples_cpp as subdirectories), as described in the compilation section.

Elementary Operations

• Located in examples_cpp/ops

• Illustrates the use of UQTk for elementary operations on random variables that are
represented with Polynomial Chaos (PC) expansions.

• To run an example, type make examples in examples_cpp/ops or run ./prob1.py

• For more documentation, see examples_cpp/ops/prob1.pdf

Forward Propagation of Uncertainty

• Located in examples_cpp/surf_rxn

• Several examples of propagating uncertainty in input parameters through a model for
surface reactions, consisting of three Ordinary Differential Equations (ODEs). Two
approaches are illustrated:

– Direct linking to the C++ UQTk libraries from a C++ simulation code:

15

∗ Propagation of input uncertainties with Intrusive Spectral Projection (ISP),
Non Intrusive Spectral Projection (NISP) via quadrature , and NISP via
Monte Carlo (MC) sampling.

∗ For more documentation, see examples_cpp/surf_rxn/prob2.pdf

∗ An example can be run with ./prob2.py

– Using simulation code as a black box forward model:

∗ Propagation of uncertainty in one input parameter with NISP quadrature
approach.

∗ For more documentation, see examples_cpp/surf_rxn/prob3.pdf

∗ An example can be run with ./prob3.py

• Both examples can be run with make examples in examples_cpp/surf_rxn

Bayesian Inference of a Line

Overview

This example is located in examples_cpp/line_infer It infers the slope and intercept
of a line from noisy data using Bayes’ rule. The C++ libraries are called directly from the
driver program. By changing the likelihood function and the input data, this program can
be tailored to other inference problems.

To run an example, type make examples in examples_cpp/line_infer or run ./line_infer.py

directly.

The file line_infer.py contains quite a bit of inline documentation about the various
settings and methods used. To get a listing of all command line options, type ./line_infer.py -h"

A typical run is as follows:

./line_infer.py --nd 9 --stats

This will run the inference problem with 9 data points, generate plots of the posterior
distributions, and generate statistics of the MCMC samples. If no plots are desired, also
give the --noplots argument.

More details

After setting a number of default values for the example problem overall, the line_infer.py
script sets the proper inference inputs in the file line_infer.xml, starting from a set of de-
faults in line_infer.xml.templ. The file line_infer.xml is read in by the C++ code

16

line_infer.x, which does the actual Bayesian inference. After that, synthetic data is gen-
erated, either from a linear, or cosine model, with added noise.

Then, the script calls the C++ line inference code line_infer.x to infer the two pa-
rameters (slope and intercept) of a line that best fits the artificial data. (Note, one can also
run the inference code directly by manually editing the file line_infer.xml and typing the
command ./line_infer.x)

The script then reads in the MCMC posterior samples file, and performs some postpro-
cessing:

Unless the flag --noplots is specified, the script computes and plots the following:

• The pushed-forward and posterior predictive error bars

– Generate a dense grid of x-values

– Evaluate the linear model y = a + bx for all posterior samples (a, b) after the
burn-in

– Pushed-forward distribution: compute the sample mean and standard deviation
of using the sampled models

– Posterior predictive distribution: combine pushed-forward distribution with the
noise model

• The MCMC chain for each variable, as well as a scatter plot for each pair of variables

• The marginal posterior distribution for each variable, as well as the marginal joint
distribution for each pair of variables

If the flag --stats is specified, the following statistics are also computed:

• The mean, MAP (Maximum A Posteriori), and standard deviations of all parameters

• The covariance matrix

• The average acceptance probability of the chain

• The effective sample sizes for each variable in the chain

Sample Results

17

1.0 0.5 0.0 0.5 1.0
x

3.5

4.0

4.5

5.0

5.5

6.0

6.5

y

Mean prediction

Data

Figure 4.1. The pushed forward posterior distribution
(dark grey) and posterior predictive distribution (light grey).

10000 15000 20000 25000 30000 35000 40000
MCMC step

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

p
a
ra

m
_a

10000 15000 20000 25000 30000 35000 40000
MCMC step

1.2

1.1

1.0

0.9

0.8

0.7

p
a
ra

m
_b

4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15
param_a

1.2

1.1

1.0

0.9

0.8

0.7

p
a
ra

m
_b

Figure 4.2. MCMC chains for parameters a and b, as well
as a scatter plot for a and b

18

4.9 5.0 5.1

p
a
ra

m
_a

1.0 0.8

p
a
ra

m
_b

4.9 5.0 5.1

1.0

0.8

Figure 4.3. Marginal posterior distributions for all vari-
ables, as well as marginal joint posteriors

19

Surrogate Construction and Sensitivity Analysis

Overview

• Located in examples_cpp/uq_surr

• A collection of scripts that construct a PC surrogate for a computational model which
is specified as a black box simulation code. Also provides tools for sensitivity analysis
of the outputs of this black box model with respect to its input parameters.

Theory

Consider a function f(λ;x) where λ = (λ1, . . . , λd) are the model input parameters of
interest, while x ∈ Rr are design parameters with controllable values. For example, x can
denote a spatial coordinate or a time snapshot, or it can simply enumerate multiple quantities
of interest. Furthermore, we assume known domains for each input parameter, i.e.

λi ∈ [ai, bi] for i = 1,d. (4.1)

The goal is to build a Polynomial Chaos (PC) surrogate function for each value of design
parameter x, i.e. for l = 1, . . . , L,

f(λ;xl) ≈ g(λ;xl) =
K−1∑
k=0

cklΨk(ξ) (4.2)

with respect to scaled inputs

ξi =
λi − bi−ai

2
bi+ai

2

∈ [−1, 1] for i = 1,d. (4.3)

Here Ψk(ξ) = Ψk(ξ1, . . . , ξd) are multivariate normalized Legendre polynomials, defined as
products of univariate normalized Legendre polynomials ψki(ξi) as follows:

Ψk(ξ) = ψk1(ξ1) . . . ψkd(ξd). (4.4)

A typical truncation rule in (4.2) is defined according to the total order of the basis terms,
i.e. only polynomials with the total order ≤ p are retained for some positive integer order p,
implying |k1|+ · · ·+ |kd| ≤ p, and K = (d+p)!/(d!p!). The scalar index k is simply counting
the multi-indices (k1, . . . , kd).

After computing the PC coefficients ckl, one can extract the global sensitivity information,
also called Sobol indices or variance-based decomposition. For example, the main sensitivity
index with respect to the dimension i (or variable ξi) is

Si(xl) =

∑
k∈Ii c

2
kl∑K−1

k=1 c
2
kl

, (4.5)

20

where Ii is the indices of basis terms that involve only the variable ξi, i.e. the one-dimensional
monomials ψ1(ξi), ψ2(ξi), In other words, these are basis terms corresponding to multi-
indices with the only non-zero entry at the i-th location.

The two generic methods of finding the PC coefficients ckl are detailed below.

Projection

The basis orthonormality enables the projection formulae

ckl =

∫
Ω

f(λ(ξ);xl)Ψk(ξ)
1

2d
dξ (4.6)

where Ω = [−1, 1]d and λ(ξ) simply denotes the linear scaling relation in (4.3).

The projection integral can be taken by

• Quadrature integration

ckl ≈
Q∑
q=1

f(λ(ξ(q));xl)Ψk(ξ
(q)), (4.7)

where ξ(q) are Gauss-Legendre quadrature points in the d-dimensional Ω = [−1, 1]d.

• Monte-Carlo integration [to be implemented]

ckl ≈
M∑
m=1

f(λ(ξ(m));xl)Ψk(ξ
(m)), (4.8)

where ξ(m) are uniformly random points in the d-dimensional Ω = [−1, 1]d.

Inference

[to be implemented]

Implementation

The script set consists of three files are

• uq_pc.py : the main script

• model.py : black-box example model

21

• plot.py : plotting

The apps employed

• generate_quad : Quadrature point/weight generation

• gen_mi : PC multiindex generation

• pce_resp : Projection via quadrature integration

• pce_sens : Sensitivity extraction

• pce_eval : PC evaluation

Main script: The syntax of the main script is

% uq_pc.py -r <run_regime>

% -p <pdomain_file> -m <method> -o <ord> -s <sam_method> -n <nqd> -v <nval>

Also one can run uq_pc.py -h for help in the terminal and to check the defaults.

The list of arguments:

• -r <run_regime>: The regime in which the workflow is employed. The options are

online : Black-box model, which is in model.py, is run directly as param-
eter ensemble becomes available. User can provide their own model.py or simply use
the current one as an example.

offline_prep : Prepare the input parameter ensemble and store in ytrain.dat

and, if validation is requested, yval.dat.
The user then should run the model (model.py ptrain.dat ytrain.dat and per-
haps model.py pval.dat yval.dat) in order to provide ensemble output for the
offline_post stage.

offline_post : Postprocess the output ensemble, assuming the model is run offline
with input ensemble provided in the offline_prep stage producing ytrain.dat and,
if validation is requested, yval.dat. The rest of the arguments should remain the same
as in the offline_post stage.

• -p <domain_file>: A file with d rows and 2 columns, where d is the number of
parameters and each row consists of the lower and upper bound of the corresponding
parameter.

• -m <method>: The method of finding the PC surrogate coefficients. The options are

proj : Projection method outlined in (4.6) and (4.7)

lsq : Least-squares. To be implemented.

bcs : Bayesian compressive sensing. To be implemented.

22

• -o <ord>: Total order p of the requested PC surrogates.

• -s <sam_method>: The input parameter sampling method. The options are

Q : Quadrature points. This sampling scheme works with the projection method
only, described in (4.7)

U : Uniformly random points. To be implemented.

• -n <nqd>: Number of samples requested if sam_method=U, or the number of quadrature
points per dimension, if sam_method=Q.

• -v <nval>: Number of uniformly random samples generated for PC surrogate valida-
tion, can be equal to 0 to skip validation.

Generated output files are:

• allsens.dat and allsens_sc.dat :The main effect sensitivity indices in a format
Lxd, where each row corresponds to a single value for the design parameter, and each
column corresponds to the sensitivity index of a parameter. The second file stores the
same results, only the sensitivity indices are scaled to sum to one for each parameter.

• results.pk : Python pickle file that includes surrogate, sensitivity and error informa-
tion. It is loaded in plotting utilities.

• *.log : Log files of the apps that have been employed, for reference.

• mi.dat : PC multiindex, for reference, in a matrix form of size Kxd, see (4.4).

• designPar.dat : A file containing values for the design parameters, for reference.

Black-box model: The syntax of the model script is

% model.py <modelPar_file> <output_file>

Also one can run model.py -h for help in the terminal and to check the defaults.

The list of arguments:

• <modelPar_file> : A file with N rows and d columns that stores the input parameter
ensemble of N samples.

• <output_file> : The file where output is stored, with N rows (number of input
parameter samples) and L columns (number of outputs, or number of design parameter
values).

23

model.py is the file that needs to be modified/provided by the user according to the model

under study. Currently, a simple example function f(λ;x) =
(∑d

i=1 λi

)(∑d
i=1

λi+λ
2
i

ix+1

)
is

implemented that also produces the file designPar.dat for design parameters xl = l for
l = 0, . . . , 6. The default dimensionality is set to d = 3.
A user-created black-box model.py should accept an input parameter file <modelPar_file>

and should produce an output file <output_file> with the formats described above, in order
to be consistent with the expected I/O.

Visualization: The syntax of the plotting script is

% plot.py <plotid>

The user is encouraged to enhance or change the visualization scripts. The current defaults,
explained below, are simply for illustration purposes. The options for the only argument
<plotid> are

sens : Plots the sensitivity information.

dm : Plots model-vs-data for one of the values of the design parameter.

idm : Plots model and data values on the same axis, for one of the values of the
design parameter.

For the visualization script above, make sure the PYTHONPATH environment variable con-
tains the directory UQTK_SRC.

Sample run:

In order to run a simple example, use the prepared an input domain file which is the
default domain file, pdomain_3d.dat, and run

• Online mode: uq_pc.py -r online -v111

• Offline mode: uq_pc.py -r offline_prep -v111,
followed by model evaluations
model.py ptrain.dat ytrain.dat and model.py pval.dat yval.dat,
and the postprocessing stage uq_pc.py -r offline_post -v111

After finishing, run plot.py sens or plot.py dm or plot.py idm to visualize some
results.

24

Global Sensitivity Analysis via Sampling

Overview

• Located in pyUQTk/sensitivity

• A collection of python functions that generate input samples for black-box models,
followed by functions that post-process model outputs to generate total, first-order,
and joint effect Sobol indices

Theory

Let X = (X1, · · · , Xn) : Ω → X ⊂ IRn be an n−dimensional Random Variable in
L2(Ω,S, P) with probability density X ∼ pX(x). Let x = (x1, · · · , xn) ∈ X be a sample
drawn from this density, with X = X1 ⊗X2 ⊗ · · · ⊗ Xn, and Xi ⊂ IR is the range of Xi.

LetX−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn) : Ω→ X−i ⊂ IRn−1, whereX−i ∼ pX−i|Xi
(x−i|xi) =

pX(x)/pXi
(xi), pXi

(xi) is the marginal density of Xi, x−i = (x1, · · · , xi−1, xi+1, · · · , xn), and
X−i = X1 ⊗ · · · ⊗ Xi−1 ⊗Xi+1 ⊗ · · · ⊗ Xn.

Consider a function Y = f(X) : Ω→ IR, with Y ∈ L2(Ω,S, P). Further, let Y ∼ pY (y),
with y = f(x). Given the variance of f is finite , one can employ the law of total variance1,2

to decompose the variance of f as

V [f] = Vxi [E[f |xi]] + Exi [V [f |xi]] (4.9)

The conditional mean, E[f |xi] ≡ E[f(X)|Xi = xi], and conditional variance, V [f |xi] =
V [f(X)|Xi = xi], are defined as

〈f〉−i ≡ E[f |xi] =

∫
X−i

f(x)pX−i|Xi
(x−i|xi)dx−i (4.10)

V [f |xi] = E[(f − 〈f〉−i)2|xi]
= E[(f 2 − 2f〈f〉−i + 〈f〉2−i)|xi]
= E[f 2|xi]− 2〈f〉−i〈f〉−i + 〈f〉2−i

=

∫
X−i

f(x)2pX−i|Xi
(x−i|xi)dx−i − 〈f〉2−i (4.11)

1en.wikipedia.org/wiki/Law_of_total_variance
2en.wikipedia.org/wiki/Law_of_total_expectation

25

The terms in the rhs of Eq. (4.9) can be written as

Vxi [E[f |xi]] = Exi [(E[f |xi]− Exi [E[f |xi]])2] (4.12)

= Exi [(E[f |xi]− f0)2]

= Exi [(E[f |xi])2]− f 2
0

=

∫
Xi

E[f |xi]2pXi
(xi)dxi − f 2

0

where f0 = E[f] = Exi [E[f |xi]] is the expectation of f , and

Exi [V [f |xi]] =

∫
Xi

V [f |xi]pXi
(xi)dxi (4.13)

The ratio

Si =
Vxi [E[f |xi]]

V [f]
(4.14)

is called the first-order Sobol index [8] and

ST−i =
Exi [V [f |xi]]

V [f]
(4.15)

is the total effect Sobol index for x−i. Using Eq. (4.9), the sum of the two indices defined
above is

Si + ST−i = S−i + STi = 1 (4.16)

Joint Sobol indices Sij are defined as

Sij =
Vxi,xj [E[f |xi, xj]]

V [f]
− Si − Sj (4.17)

for i, j = 1, 2 . . . , n and i 6= j.

Si can be interpreted as the fraction of the variance in model f that can be attributed
to the i-th input parameter only, while Sij is the variance fraction that is due to the joint
contribution of i-th and j-th input parameters. STi measures the fractional contribution to
the total variance due to parameter xi and its interactions with all other model parameters.

The Sobol indices are numerically estimated using Monte Carlo (MC) algorithms pro-
posed by Saltelli [7] and Kucherenko et al [3]. Let xk = (x1, · · · , xn)k be a sample of X
drawn from pX . Let x′k−i be a sample from the conditional distribution pX−i|Xi

(x′−i|xki), and
x′′ki a sample from the conditional distribution pXi|X−i

(x′′i |xk−i).

The expectation f0 = E[f] and variance V = V [f] are estimated using the xk samples as

f0 ≈
1

N

N∑
k=1

f(xk), V ≈ 1

N

N∑
k=1

f(xk)2 − f 2
0 (4.18)

26

where N is the total number of samples. The first-order Sobol indices Si are estimated as

Si ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−i ∪ xki)− f 2
0

)
(4.19)

The joint Sobol indices are estimated as

Sij ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−(i,j) ∪ xki,j)− f 2
0

)
− Si − Sj (4.20)

For STi , UQTk offers two alternative MC estimators. In the first approach, STi is estimated
as

STi = 1− S−i ≈ 1− 1

V

(
1

N

N∑
k=1

f(xk)f(x′′ki ∪ xk−i)− f 2
0

)
(4.21)

In the second approach, STi is estimated as

STi ≈
1

2V

(
1

N

N∑
k=1

(
f(xk)− f(xk−i ∪ x′′ki)

)2

)
(4.22)

Implementation

Directory pyUQTk/sensitivity contains two python files

• gsalib.py : set of python functions implementing the MC sampling and estimators
for Sobol indices

• gsatest.py : workflow illustrating the computation of Sobol indices for a toy problem

gsalib.py implements the following functions

• genSpl_Si(nspl,ndim,abrng,**kwargs) : generates samples for Eq. (4.19). The
input parameters are as follows

nspl: number of samples N ,

ndim: dimensionality n of the input parameter space ,

abrng: a 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are
used in subsequent calculations of joint Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

27

• genSens_Si(modeval,ndim,**kwargs) : computes first-order Sobol indices using Eq. (4.19).
The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_SiT(nspl,ndim,abrng,**kwargs) : generates samples for Eqs. (4.21-4.22).
The input parameters are as follows

nspl: number of samples N ,

ndim: dimensionality n of the input parameter space ,

abrng: an 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are
used in subsequent calculations of Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_SiT(modeval,ndim,**kwargs) : computes total Sobol indices using either
Eq. (4.21) or Eq. (4.22). The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

type: specifies wether to use Eq. (4.21) for type = ”type1” or Eq. (4.22) for
type 6= ”type1”

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_Sij(ndim,**kwargs) : generates samples for Eq. (4.20). The input parame-
ters are as follows

ndim: dimensionality n of the input parameter space ,

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples saved by genSpl_Si.

28

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
i

(x1 ,x2) (x2 ,x3) (x3 ,x4)
0

0.02

0.04

0.06

S
ij

Figure 4.4. First-order (left frame) and joint (right frame)
Sobol indices for the model given in Eq. (4.23). The black cir-
cles show the theorerical values, computed analytically, and
the error bars correspond to ±σ computed based on an en-
semble of 10 runs.

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_Sij(sobolSi,modeval,**kwargs) : computes joint Sobol indices using Eq. (4.20).
The input parameters are as follows

sobolSi: array with values for first-order Sobol indices Si

modeval: name of ascii file with model evaluations.

The following optional parameter can also be specified

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

gsatest.py provides the workflow for the estimation of Sobol indices for a simple model
given by

f(x1, x2, . . . , xn) =
n∑
i=1

xi +
n−1∑
i=1

i2xixi+1 (4.23)

In the example provided in this file, n (ndim in the file) is set equal to 4, and the number of
samples N (nspl in the file) to 104. Figures 4.4 and 4.5 show results based on an ensemble
of 10 runs. To generate these results run the example workflow:

python gsatest.py

29

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
T i

Figure 4.5. Total-order Sobol indices for the model given
in Eq. (4.23). The red bars shows results based on Eq. (4.21)
while the yellow bars are based on Eq. (4.22). The black
circles show the theorerical values, computed analytically,
and the error bars correspond to ±σ computed based on an
ensemble of 10 runs. For this model, Eq. (4.22) provides
more accurate estimates for STi compared to results based on
Eq. (4.21).

30

Karhunen-Loève Expansion of a Stochastic Process

• Located in examples_cpp/kl_sample

• Some examples of the construction of 1D and 2D Karhunen-Loève (KL) expansions of
a Gaussian stochastic process, based on sample realizations of this stochastic process.

• For more information and examples, see examples_cpp/kl_sample/kl_example.pdf

31

32

Chapter 5

Support

UQTk is the subject of continual development and improvement. If you have questions
about or suggestions for UQTk, feel free to e-mail Bert Debusschere, at mailto:bjdebus@

sandia.gov.

33

34

References

[1] S. Babacan, R. Molina, and A. Katsaggelos. Bayesian compressive sensing using Laplace
priors. IEEE Transactions on Image Processing, 19(1):53–63, 2010.

[2] B.J. Debusschere, H.N. Najm, P.P. Pébay, O.M. Knio, R.G. Ghanem, and O.P. Le Mâıtre.
Numerical challenges in the use of polynomial chaos representations for stochastic pro-
cesses. SIAM Journal on Scientific Computing, 26(2):698–719, 2004.

[3] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity indices
for models with dependent variables. Computer Physics Communications, 183:937–946,
2012.

[4] O.P. Le Mâıtre and O.M. Knio. Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics (Scientific Computation). Springer, 1st
edition. edition, April 2010.

[5] Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos ac-
celeration of Bayesian inference in inverse problems. Journal of Computational Physics,
228(6):1862–1902, 2009.

[6] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical
Statistics, 23(3):470 – 472, 1952.

[7] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145:280–297, 2002.

[8] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Modeling
and Comput. Exper., 1:407–414, 1993.

35

DISTRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic copy)

36

v1.38

